Artigo de Revisão

DNA forense e a importância de sua aplicação na odontologia jurídica: revisão narrativa

Como citar: Toribio RML, Eugenio NEC, Suarez DAML. DNA forense e a importância de sua aplicação na odontologia jurídica: revisão narrativa. Persp Med Legal Pericias Med. 2024; 9: e240409

https://dx.doi.org/10.47005/240409

Recebido em 24/04/2024
Aceito em 27/04/2024

Artigo original em inglês.  Selecione este idioma no menu ao topo para acessar texto na íntegra.

Os autores informam não haver conflito de interesse.

FORENSIC DNA AND THE IMPORTANCE OF ITS APPLICATION IN THE ODONTOLOGY LEGAL: NARRATIVE REVIEW

Roe Mio Lopez Toribio (1)

https://orcid.org/0009-0001-3367-4920

Nancy Elizabeth Castañeda Eugenio (2)

https://orcid.org/0000-0002-3016-663X

Digna Amabilia Manrique de Lara Suarez (2)

https://orcid.org/0000-0003-4488-252X

(1) Universidad Nacional Hermilio Valdizán, Huanuco, Peru (autor principal)

(2) Universidad Nacional Hermilio Valdizán, Huanuco, Peru (autor secundario)

E-mail: miolopeztoribio@hotmail.com

RESUMO

A medicina forense está associada à aplicação da ciência a questões jurídicas. Um dos objetivos principais do sistema judicial é identificar uma prova ou um indivíduo envolvido num crime; especialistas forenses desempenham um papel crítico neste processo. A odontologia legal é um ramo da medicina forense e da odontologia que se concentra no uso da odontologia no sistema jurídico. De acordo com os regulamentos da Interpol DVI, as características dentárias são um dos principais componentes da identificação. Consequentemente, a identificação de restos mortais humanos não identificados utilizando características dentárias é uma das principais aplicações da odontologia legal. A utilização do ADN como identificador humano, especialmente em casos de restos mortais gravemente decompostos, queimados ou mutilados, tem sido facilitada pelos recentes desenvolvimentos na tecnologia do ADN e pela utilização de saliva e dentes como fontes de ADN. Estes desenvolvimentos também ajudam a ligar o criminoso ao crime. À luz disso, apresentamos aqui uma revisão das aplicações da genética forense sob a perspectiva da odontologia legal.

Nesta revisão, os resultados foram extraídos manualmente de artigos indexados nas bases de dados Scopus, PubMed, Google Scholar e EBSCO que respondem aos termos de busca realizados em inglês, espanhol, chinês mandarim e francês. Tais como DNA forense, genética forense, odontologia legal, odontologia forense e DNA odontológico, para descrever a gestão médico-odontológica da odontologia legal até o momento.   

Palavras-chave: Impressão digital de DNA, odontologia legal, saliva, dentes.


Referências bibliográficas

  1. Malik SD, Pillai JP, Malik U. Forensic genetics: Scope and application from forensic odontology perspective. J Oral Maxillofac Pathol 2022; 26:558-563. http://dx.doi.org/10.4103/jomfp.jomfp_341_21
  2. Schwartz TR Schwartz EA, Mieszerski L, McNally L, Kobilinsky L. Characterization of deoxyribonucleic acid (DNA) obtained from teeth subjected to various environmental conditions. J Forensic Sci 1991; 36: 979–90. http://dx.doi.org/10.1520/jfs13113j
  3. Yasar, Z. F., Durukan, E., & Buken, E. (2019). The knowledge level of dentists in Turkey about their potential role on the disaster victims identification (DVI) team. Disaster Med Public Health Prep 2019; 13: 533-538. https://doi.org/10.1017/dmp.2018.111
  4. van Dijk PJ, Weissing FJ, Ellis T. How Mendel’s interest in inheritance grew out of plant improvement. Genetics 2018; 210: 347–55. http://dx.doi.org/10.1534/genetics.118.300916
  5. Butler JM. Recent advances in forensic biology and forensic DNA typing: INTERPOL review 2019-2022. Forensic Sci Int Synerg 2022; 6:100311. https://doi.org/10.1016/j.fsisyn.2022.100311
  6. Diegoli T. M. Forensic typing of short tandem repeat markers on the X and Y chromosomes. Forensic Sci Int Genet 2015; 18: 140–151. https://doi.org/10.1016/j.fsigen.2015.03.013
  7. Johnson NA, Lachance J. The genetics of sex chromosomes: evolution and implications for hybrid incompatibility. Ann N Y Acad Sci 2012; 1256, E1–E22. https://doi.org/10.1111/j.1749-6632.2012.06748.x
  8. Gunn, A. Essential forensic biology, third ed. John Wiley & Sons 2019.
  9. Saad R. Discovery, development, and current applications of DNA identity testing. Proc (Bayl Univ Med Cent) 2005; 18:130–3. https://doi.org/10.1080/08998280.2005.11928051
  10. Haddrill P. R. Developments in forensic DNA analysis. Emerg Top Life Sci 2021; 5: 381–393. https://doi.org/10.1042/ETLS20200304
  11. Lavrov DV, Pett W. Animal mitochondrial DNA as we do not know it: mt-Genome organization and evolution in nonbilaterian lineages. Genome Biol Evolution 2016; 8: 2896–913. http://dx.doi.org/10.1093/gbe/evw195
  12. McCord, B. R., Gauthier, Q., Cho, S., Roig, M. N., Gibson-Daw, G. C., Young, B., Taglia, F., Zapico, S. C., Mariot, R. F., Lee, S. B., & Duncan, G. Forensic DNA Analysis. Anal Chem 2019; 91: 673–688. https://doi.org/10.1021/acs.analchem.8b05318
  13. Ghatak S, Muthukumaran RB, Nachimuthu SK. A simple method of genomic DNA extraction from human samples for PCR-RFLP analysis. J Biomol Tech 2013; 24: 224–31. http://dx.doi.org/10.7171/jbt.13-2404-001
  14. Bugawan TL, Saiki RK, Levenson CH, Watson RM, Erlich HA. The use of non-radioactive oligonucleotide probes to analyze enzymatically amplified DNA for prenatal diagnosis and forensic HLA typing. Nat Biotechnol 1988; 6: 943–7. http://dx.doi.org/10.1038/nbt0888-943
  15. Jeffreys AJ, Wilson V, Thein SL. Hypervariable ‘minisatellite’ regions in human DNA. Nature 1985; 314: 67–73. http://dx.doi.org/10.1038/314067a0
  16. Novroski, N. M., Woerner, A. E., & Budowle, B. Potential highly polymorphic short tandem repeat markers for enhanced forensic identity testing. Forensic Sci Int Genet 2018; 37: 162-171. https://doi.org/10.1016/j.fsigen.2018.08.011
  17. Kitamura M. [DNA Typing for Individual Identification]. Yakugaku Zasshi 2019; 139: 725–730. https://doi.org/10.1248/yakushi.18-00166-6
  18. Wu, L., Chu, X., Zheng, J., Xiao, C., Zhang, Z., Huang, G., Li, D., Zhan, J., Huang, D., Hu, P., & Xiong, B. Targeted capture and sequencing of 1245 SNPs for forensic applications. Forensic Sci Int Genet 2019; 42: 227–234. https://doi.org/10.1016/j.fsigen.2019.07.006
  19. Hochmeister MN. PCR Analysis of DNA from fresh and decomposed bodies and skeletal remains in medico legal death investigations. Methods Mol Biol 1998; 98: 19–26. http://dx.doi.org/10.1385/0-89603-443-7:19
  20. Smith BC, Fisher DL, Weedn VW, Warnock GR, Holland MM. A systematic approach to the sampling of Dental DNA. J Forensic Sci 1993; 38: 1194–209. http://dx.doi.org/10.1520/jfs13524j
  21. Tran-Hung L, Tran-Thi N, Aboudharam G, Raoult D, Drancourt MA. New method to extract dental pulp DNA: Application to universal detection of bacteria. PLoS One 2007; 2: e1062. http://dx.doi.org/10.1371/journal.pone.0001062
  22. Sweet D, Hildebrand D. Recovery of DNA from human teeth by cryogenic grinding. J Forensic Sci 1998; 43:1199–202. http://dx.doi.org/10.1520/jfs14385j
  23. Vandenberg N, Van Oorschot RAH. The use of PolilightR in the detection of seminal fluid, saliva, and bloodstains and comparison with conventional chemical-based screening tests. J Forensic Sci 2006; 51:361–70. http://dx.doi.org/10.1111/j.1556-4029.2006.00065.x
  24. Gardner, E. Forensic Science: An Introduction to Scientific and Investigative Techniques, 5th ed. Forensic Science Review 2021; 33: 25-27. https://link.gale.com/apps/doc/A652742847/AONE?u=anon~4fcc576d&sid=googleScholar&xid=57557dff
  25. Rana, A. K. The future of forensic biology. J Biomed 2018; 3: 13-18. 10.7150/jbm.22760
  26. Sweet DJ, Lorente JA, Lorente M, Valenzuela A, Villanueva E. An Improved Method to Recover Saliva from Human Skin: The Double Swab Technique. J Forensic Sci 1997; 42:320–2. http://dx.doi.org/10.1520/jfs14120j
  27. Sweet DJ, Hildebrand DP. Saliva from cheese bite yields DNA profile of burglar. Int J Legal Med 1999; 112:201–3. http://dx.doi.org/10.1007/s004140050234
  28. Sweet DJ, Shutler GG. Analysis of salivary DNA evidence from a bite mark on a submerged body. J Forensic Sci 1999; 44:1069–72. http://dx.doi.org/10.1520/jfs12045j
  29. Martinez-Gonzalez LJ, Lorente JA, Martinez-Espin E, Alvarez JC, Lorente M, Villanueva E, et al. Intentional mixed buccal cell reference sample in a paternity case. J Forensic Sci 2007; 52:397–9. http://dx.doi.org/10.1111/j.1556-4029.2006.00373.x
  30. Kayser M. Forensic use of Y-chromosome DNA: a general overview. Human genetics 2017; 136: 621–635. https://doi.org/10.1007/s00439-017-1776-9
  31. Kaleelullah, R. A., & Hamid, P. Forensic Odontology, a Boon and a Humanitarian Tool: A Literature Review. Cureus 2020; 12: e7400. https://doi.org/10.7759/cureus.7400
  32. Ata-Ali, J., & Ata-Ali, F. Forensic dentistry in human identification: A review of the literature. J Clin Exp Dent 2014; 6: e162–e167. https://doi.org/10.4317/jced.51387
  33. Andersen, M. M., & Balding, D. J. Assessing the Forensic Value of DNA Evidence from Y Chromosomes and Mitogenomes. Genes (Basel) 2021; 12: 1209. https://doi.org/10.3390/genes12081209
  34. Giardina, E., & Ragazzo, M. Special Issue “Forensic Genetics and Genomics”. Genes (Basel) 2021, 12(2), 158. https://doi.org/10.3390/genes12020158