Original Article

METHOD VALIDATION FOR QUANTIFICATION OF CARBAMAZEPINE IN FINGERPRINTS DEPOSITED ON GLASS COVER SLIPS

How to cite: Müller IR, Lizot LLF, Linden R. Method validation for quantification of carbamazepine in fingerprints deposited on glass cover slips.Persp Med Legal Pericia Med. 2023; 8: e230725

https://dx.doi.org/10.47005/230725

Submitted 05/11/2022
Accepted 07/25/2023

Research project approved by the Research Ethics Committee of the University of Passo Fundo, under opinion number 5,444,275. The authors inform there is no conflict of interest.

VALIDAÇÃO DE MÉTODO PARA QUANTIFICAÇÃO DE CARBAMAZEPINA EM IMPRESSÕES DIGITAIS COLETADAS EM LÂMINAS DE VIDRO

Isadora Ritter Müller (1)

http://lattes.cnpq.br/6809082662782758https://orcid.org/0000-0002-1489-9198

Lilian de Lima Feltraco Lizot (2)

http://lattes.cnpq.br/2523163224304535  – https://orcid.org/0000-0003-3165-1407

Rafael Linden (3)

http://lattes.cnpq.br/6036320391106370 – https://orcid.org/0000-0002-6966-5073

(1) Universidade Feevale, Laboratório de Toxicologia e Análises Toxicológicas, Novo Hamburgo-RS, Brasil. (autor principal)

(2) Universidade Feevale, Laboratório de Toxicologia e Análises Toxicológicas, Novo Hamburgo-RS, Brasil.(tratamento de dados)

(3) Universidade Feevale, Laboratório de Toxicologia e Análises Toxicológicas, Novo Hamburgo-RS, Brasil.(orientador)

Email: isa_muller@hotmail.com

ABSTRACT

Introduction: About 38 million people are exposed to carbamazepine per year for the treatment of epilepsy. The drug is on the WHO essential list. The treatment for epilepsy happens in a prophylactic way, to provide the patient with a better life condition. Therefore, in addition to the choice of medication and the dose required for everyone, adherence to therapy is also of great importance in the functioning of the treatment. Fingerprint is widely used in the forensic area, this matrix is ​​also appearing in the toxicological and clinical area, to find out if the individual has ingested a substance. Material and method: A method was validated in High Performance Liquid Chromatography coupled to Mass Spectrometry, following the validation parameters of the Food and Drug Administration for the quantification of carbamazepine (CBZ) in fingerprints. Results: The method demonstrated high sensitivity for detecting CBZ in fingerprint samples. The detection limit of the method was 0.05 ng digital^-1 for CBZ. The intra-assay precision ranged from 3.58 to 7.90%. The inter-assay precision was 2.16 to 5.79% for CBZ. The accuracy presented by the method ranged from 95.02 to 102.76%. Discussion: Liquid chromatography conditions play a key role in achieving fast and effective component separation and ionization. Conclusion: Thus, a simple and sensitive method is being validated for CBZ quantification in fingerprint samples deposited on glass slides.

Keywords: Carbamazepine, Fingerprints, Quantification.


Bibliographical references

  1. Campos MS de A, Ayres LR, Morelo MRS, Marques FA, Pereira LRL. Efficacy and Tolerability of Antiepileptic Drugs in Patients with Focal Epilepsy: Systematic Review and Network Meta-analyses. Pharmacotherapy. 2016;36(12):1255–71. https://doi.org/10.1002/phar.1855
  2. Ding J, Zhang Y, Jiao Z, Wang Y. The effect of poor compliance on the pharmacokinetics of carbamazepine and its epoxide metabolite using Monte Carlo simulation. Acta Pharmacol Sin [Internet]. novembro de 2012;33(11):1431–40. Available at: https://doi.org/10.1038/aps.2012.135
  3. Zaccara G, Perucca E. Seminar in Epileptology Interactions between antiepileptic drugs , and between antiepileptic drugs and other drugs. 2014;16(4):409–31. https://doi.org/10.1684/epd.2014.0714
  4. Vucićević K, Miljković B, Velicković R, Pokrajac M, Mrhar A, Grabnar I. Population pharmacokinetic model of carbamazepine derived from routine therapeutic drug monitoring data. Ther Drug Monit [Internet]. dezembro de 2007;29(6):781–8. Available at: doi: 10.1097/FTD.0b013e31815c15f3
  5. Thijs RD, Surges R, O’Brien TJ, Sander JW. Epilepsy in adults. Lancet (London, England) [Internet]. fevereiro de 2019;393(10172):689–701. Available at: https://doi.org/10.1016/S0140-6736(18)32596-0
  6. WHO. Epilepsy [Internet]. 2019. p. 1–6. Available at: https://www.who.int/news-room/fact-sheets/detail/epilepsy
  7. Neels HM, Sierens AC, Naelaerts K, Scharpé SL, Hatfield GM, Lambert WE. Therapeutic drug monitoring of old and newer anti-epileptic drugs. Clin Chem Lab Med [Internet]. 2004;42(11):1228–55. Available at: 10.1515/CCLM.2004.245
  8. Marino Jr. R, Cukiert A, Pinho E. Aspectos epidemiológicos da epilepsia em São Paulo: um estudo da prevalência. Arq Neuropsiquiatr [Internet]. 1986;44(3):243–54. Available at: https://doi.org/10.1590/S0004-282X1986000300004
  9. Costa OL, Brandão EC, Segundo BML. Atualização em epilepsia: revisão de literatura. Rev Med [Internet]. 2020;99(2):170–81. Available at: http://dx.doi.org/10.11606/issn.1679-9836.v99i2p170-181
  10. Noronha ALA, Borges MA, Marques LHN, Zanetta DMT, Fernandes PT, De Boer H, et al. Prevalence and pattern of epilepsy treatment in different socioeconomic classes in Brazil. Epilepsia. 2007;48(5):880–5. https://doi.org/10.1111/j.1528-1167.2006.00974.x
  11. Moshé SL, Perucca E, Ryvlin P, Tomson T. Epilepsy: new advances. Lancet (London, England). março de 2015;385(9971):884–98. https://doi.org/10.1016/S0140-6736(14)60456-6
  12. Patsalos PN, Spencer EP, Berry DJ. Therapeutic drug monitoring of antiepileptic drugs in epilepsy: A 2018 update [Internet]. Vol. 40, Therapeutic Drug Monitoring. 2018. 526–548 p. Available at: doi: 10.1097/FTD.0000000000000546
  13. Landmark CJ, Johannessen SI, Patsalos PN. Expert Opinion on Drug Metabolism & Toxicology Therapeutic drug monitoring of antiepileptic drugs : current status and future prospects. Expert Opin Drug Metab Toxicol [Internet]. 2020;00(00):1–12. Available at: https://doi.org/10.1080/17425255.2020.1724956
  14. Goucher E, Kicman A, Smith N, Jickells S. The detection and quantification of lorazepam and its 3-O-glucuronide in fingerprint deposits by LC-MS/MS. J Sep Sci. 2009;32(13):2266–72. https://doi.org/10.1002/jssc.200900097
  15. Ismail M, Stevenson D, Costa C, Webb R, De Puit M, Bailey M. Noninvasive detection of cocaine and heroin use with single fingerprints: Determination of an environmental cutoff. Clin Chem [Internet]. 2018;64(6):909–17. Available at: https://doi.org/10.1373/clinchem.2017.281469
  16. Du Q, Zhang Y, Wang J, Liu B. Simultaneous determination and quantitation of hypolipidemic drugs in fingerprints by UPLC-Q-TRAP/MS. J Chromatogr B Anal Technol Biomed Life Sci [Internet]. 2021;1175(September 2020):122496. Available at: https://doi.org/10.1016/j.jchromb.2020.122496
  17. US-FDA 2018. USFDA, Guidance fo Industry: Bioanalytical method validation [Internet]. US Department of Health and HUman Service, US FDA, Center for Dug Evaluation and Resarch, Silver Spring. 2018. Available at: https://www.fda.gov/media/70858/download
  18. Goucher E, Kicman A, Smith N, Jickells S. The detection and quantification of lorazepam and its 3-O-glucuronide in fingerprint deposits by LC-MS/MS. J Sep Sci [Internet]. julho de 2009;32(13):2266–72. Available at: https://doi.org/10.1002/jssc.200900097
  19. Qu L, Fan Y, Wang W, Ma K. Developmente, validation and clinical application of an online-SPE-LC-HRMS/MS for simultaneous quantification of phenobarbital, phenytoin, carbamazepine, and its active metabolite carbamazepine 10,11-epoxide. Talanta [Internet]. 2016; Available at: http://dx.doi.org/10.1016/j.talanta.2016.05.036